- アーティスト: ハーン(ヒラリー),シェーンベルク,シベリウス,サロネン(エサ=ペッカ),スウェーデン放送交響楽団
- 出版社/メーカー: ユニバーサル ミュージック クラシック
- 発売日: 2008/03/05
- メディア: CD
- クリック: 16回
- この商品を含むブログ (18件) を見る
学生に偶有性の話をしたあとに、MRさんとの面会(学生にとっては実習)も行った。「臨床の論文そのものをもってくるメーカーが一社もないことに驚いた!」と漏らした学生から、「やはりハコヒゲズって、使えるんですか?」と質問が飛び出した。
ハコヒゲズ?
聞いてみると、母集団の分布特性に限らずそのデータ値そのものをわかりやすく表現する手法のようだ。
よかった。私に、人の話を聞く余裕があって。50%は未知という偶有性の構えの賜物である。
そして、私は、先週間違えて購入したヒラリーハーンのヴァイオリンを思い出した。 本当は、三菱地所のジャーナルで、ギタリストの村治佳織さんが毎朝聴いているというハーンのCDを購入するつもりが、間違えて別のジャケット「シベリウス&シェーンベルク:ヴァイオリン協奏曲」を買ってしまったのだ。朝の目覚めとはほど遠く、ヒッチコック映画のいちばん怖いシーンで使ってほしい曲ばかり。諦めずに最後まで聴いて、気がついた。ヴァイオリンの本気。
負を知って、生を知る。今年の春樹も1Q84である。
そして、私は「ヒコヒゲズ」も受け入れた。
・箱ひげ図(箱髭図、はこひげず、box plot)とは、ばらつき のデータをわかりやすく表現するための統計学的グラフ。
・特に品質管理で盛んに用いられる。
・一般的なジョン・テューキーの方式では、重要な5種の要約統計量 である、最小値、第1四分位点 、中央値 、第3四分位点と最大値を表現する。
つまり、母集団 の特性によるさまざまな確率分布 のような仮定に関係なく、データの分布を表現することができる!箱の各部分の間隔から分散 や歪度 の程度、また外れ値 (これは後述のように箱ひげ図の方式により異なる)を知ることもできる。
具体例 (wikipediaより)
+—–+-+
* o |——-| + | |—|
+—–+-+
number line
0 1 2 3 4 5 6 7 8 9 10
このデータセットから次のことがわかる:
最小値(min) = 5。
第1四分位点(Q1) = 7。
中央値(第2四分位点、Med) = 8.5。
第3四分位点(Q3) = 9。
最大値(max) = 10。
平均値 = 8。
IQR(interquartile range) = Q3 - Q1 = 2
3.5という値は”軽度の”外れ値、つまりQ1よりも 1.5×IQR から 3×IQR だけ下にある。
0.5という値は”極端な”外れ値、つまりQ1よりも 3×IQR 以上下にある。
外れ値以外の最小値は5。
データは左に歪んでいる(負の歪度)。
気づき)
・ふむ。実習でもしないと、実用性のほどはわからない。
・生データがこのように表現できることは、感動
・まだまだ知らないことがある。
これから)医療安全委員会
目覚めには、こちらのヒラリーハーン「バッハ:ヴァイオリン協奏曲集」を
- アーティスト: ハーン(ヒラリー),バッハ,カヘイン(ジェフリー),ヴォーゲル(アラン),バーチャー(マーガレット),ロサンゼルス室内管弦楽団
- 出版社/メーカー: ユニバーサル ミュージック クラシック
- 発売日: 2007/09/05
- メディア: CD
- クリック: 42回
- この商品を含むブログ (9件) を見る
コメント